National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Study of effect of side chains of organic semiconductors for bioelectronic applications
Ivanová, Lucia ; Cigánek, Martin (referee) ; Krajčovič, Jozef (advisor)
Organic bioelectronics is a relatively young but perspective science discipline that introduces the applicability of organic electronic materials in bioelectronic devices. The promising outlook for using these applications ranges from improving the quality of the disabled people's life to the development of artificial intelligence. The theoretical part describes the essential properties of semiconducting polymers for the utilization in bioelectronics and, moreover, it presents a way of improving these properties by the proper implementation of the side chains. It deals with the possibility of optimizing the biomimetic properties of conjugated polymers by using bio-inspired molecules as peripheral chains, specifically nucleic bases. The nucleobase groups introduced onto the polymer chain thus provide the synthetic molecules with the ability of self-assembly and recognition of each other. The second part of the thesis focuses on the modification of the adenine molecule, with the preparation of the key intermediate for Stille coupling. Subsequent cross-coupling reaction results in the extension of the adenine’s -conjugated system with the thiophene molecule.
Study of effect of side chains of organic semiconductors for bioelectronic applications
Ivanová, Lucia ; Cigánek, Martin (referee) ; Krajčovič, Jozef (advisor)
Organic bioelectronics is a relatively young but perspective science discipline that introduces the applicability of organic electronic materials in bioelectronic devices. The promising outlook for using these applications ranges from improving the quality of the disabled people's life to the development of artificial intelligence. The theoretical part describes the essential properties of semiconducting polymers for the utilization in bioelectronics and, moreover, it presents a way of improving these properties by the proper implementation of the side chains. It deals with the possibility of optimizing the biomimetic properties of conjugated polymers by using bio-inspired molecules as peripheral chains, specifically nucleic bases. The nucleobase groups introduced onto the polymer chain thus provide the synthetic molecules with the ability of self-assembly and recognition of each other. The second part of the thesis focuses on the modification of the adenine molecule, with the preparation of the key intermediate for Stille coupling. Subsequent cross-coupling reaction results in the extension of the adenine’s -conjugated system with the thiophene molecule.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.